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We consider here the flow due to the oscillation of a slender oblate spheroid in a 
non-homogeneous, rotating fluid confined between two parallel planes which 
are perpendicular to the (vertical) axis of rotation. The direction of oscillation 
of the spheroid is perpendicular to the axis of rotation. By solving a set of 
dual integrals the steady-state solution is obtained in the two cases when the 
plates are at  an infinite distance from the body and when they are at  a large but 
finite distance. The singular or discontinuous surfaces observed in the case of 
homogeneous fluid are absent here. Also, the steady-state velocity is no longer 
independent of the distance along the axis of rotation. The velocity has now a 
vertical gradient, an important feature in the case of stratified fluid. It is also 
found that the presence of the plane boundaries increases the force on the body. 

1. Introduction 
When an axisymmetric body moves along its axis of revolution in a rotating 

fluid the disturbance created by it has a singular character on the circum- 
scribing cylinder,% and the fluid inside ‘3 is pushed along the body while outside 
V the flow tends to be steady and two-dimensional. This phenomenon was studied 
experimentally by Taylor ( 1923) whose observations were confirmed theoretically 
by, for instance, Grace (1927), Stewartson (1953), etc. When the motion is per- 
pendicular to the axis of symmetry, Taylor (1923) observed similar phenomena 
inside the circumscribing cylinder V but outside it the motion was highly asym- 
metric. Recently, Stewartson (1967) has studied this problem when the rotating 
fluid is bounded by parallel planes. Starting with an initial value problem, he 
deduces that the ultimate flow (t -+ 00) is two-dimensional outside %, whereas 
inside V the fluid is stagnant in the rotating frame. Also he shows that the dis- 
continuity on the cylinder V can be thought of as an arbitrary thin shear layer 
providing smooth transition between the fluid exterior and interior of V. Partial 
explanations are given for the observed asymmetry outside V. 

The problem of three-dimensional disturbances caused by an axisymmetric 
body when it moves in a non-homogeneous fluid rotating with a constant angular 
velocity, has received some attention in recent times, as it involves certain 
features different from those found in the case of homogeneous fluid. In  an earlier 
work (Krishna & Sarma 1969a) the authors studied the axisymmetric flow 
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created by an oscillating body in an unbounded stratified fluid, subject to 
constant rotation about the axis of revolution of the body. It is found that it 
is not possible to obtain steady-state solutions on the basis of linearized theory, 
though no singular or discontinuous surfaces arise in the limit as the frequency 
of oscillation tends to zero. On the other hand, when the non-homogeneous 
rotating fluid is bounded externally by an infinite cylinder, the steady-state 
solutions exist. For example, a solution has been obtained in the case of a disk 
moving along the axis by using Oseen-type steady-state equations (Krishna & 
Sarma 1969b). 

In  this paper, we have studied the flow created by oscillations of a spheroid 
in a stratified fluid rotating with a constant angular velocity between two 
horizontal plane boundaries such that relative to therotating axis (which coincides 
with the axis of revolution) the motion is in a perpendicular direction to it. 
The body is assumed to be slender in order to satisfy the boundary condition 
on the disk. Steady-state solutions are obtained in the two cases when the plane 
boundaries are inh i t e  and when they are finite but at large distances. Forces 
acting on the body are also calculated in both cases. In  contrast to homogeneous 
rotating fluid, here there exist no singular or discontinuous surfaces. Also from 
the expressions for u, 2, in the limiting case, we note that the steady-state velocity 
is no longer independent of the distance measured along the axis of rotation but 
gives rise to the vertical gradient of horizontal velocity thus violating the Taylor- 
Proudman constraint of homogenous fluids (Barcilon & Pedlosky 1967). It is 
also to be noted that the influence of plane boundaries increases the force acting 
on the spheroid in the transverse direction. 

2. Governing equations 
Consider a set of rectangular Cartesion axes (Ox, Oy, Ox), Oz being measured 

in the vertical direction, opposing gravity. The equations of motion of an inviscid 
fluid with respect to a frame of reference rotating with a constant angular 
velocity about z axis can be written in vector form as (Yih 1965) 

= - V p + p X - 2 p 8  x v - p 8  x (8 x r), 

in which v is the velocity vector, r the co-ordinate vector and X represents the 
body force. In  the case of stratified incompressible fluid, gravity being the only 
body force, the components X, and X ,  are zero, and the governing equations are 

p - =  - - + 2  a p  pQ?J+pQZx, 
at an 

aw ap 
P-= --- PS, at a x  

where u, v, w denote the velocity components along x, y, z, directions respectively. 
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Since the fluid is incompressible 

The equation of continuity reduces to 

au av aw 
ax ay az 
-+-+- = 0. 

The stratification in the undisturbed state is taken to be linear and a function 
of z alone so that the initial density po is equal to PA( 1 - pz) where B and pA are 
constants. Let Po be the corresponding pressure. 

The fluid is assumed to be confined within two parallel planes each per- 
pendicular to the axis of rotation (but otherwise unbounded). Consider an 
oblate spheroid whose axis of revolution coincides with the axis of rotation, 
oscillating along the Ox direction with a velocity Ueiut, such that relative to 
the rotating fluid, the motion is in a straight line perpendicular to the axis. 
Choosing the origin to be at  the centre, the equation of the spheroid can be taken 
as ( x 2 + + 2 ) / ~ 2 + ~ 2 / b 2  = 1. 

Let the components of the fluid velocity in the perturbed state, relative to 
instantaneously fixed axes at the centre of the body, be u, v, w. Let the sub- 
sequent density and pressure be p and P, respectively. Substituting u, v,  w, 
P,+P, po+p in the equations (2.1)-(2.4) and using the Boussinesq approxima- 
tion, the linearized equations of motion can be written as 

P'(au-2*v) = --, ap 
O at ax 

ap po -+2Qu =--, 
I(: ) ay 

,aw ap 
PO% = ---pg, az 

ap at+W- apo = 0 
az 

au av aw 
ax ay  ax 
- + - + - - 0 .  

The boundary condition on the spheroid is that 

(2.10) 

(2.11) 

and the condition on the planes is 

w = 0 on 1x1 = h. (2.12) 

Taking oscillations for thevariables as P = P'ewt; u = u'ektetc. and eliminating 
u', v' w' from (2.6)-(2.8) using (2.9) and (2.10), the governing equation in 
terms of P' is 

-_ +-+--- - 0, (2.13) a2p' a2pi 4a2 - q 2  a2pi 
ax2 ay2 pq-az az2 
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and ur, v', w r  expressed in terms of P' are 
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- - ip;u(4Q2- c2)x on z2+y2+e= - 1. (2.15) 
f7 a2 b2 

Introducing cylindrical polars (r', 8) 

(2.13) transforms to x = rt cos 8, y = r' sin 8, 

a2pt 1 apt 1 a2P' 4 ~ 2 -  e 2  a2P' 
P r' ar rt2 a62 P g - e s  a22 = '3 
+-7+--+ 

with the condition (2.15) as 

apt 2Q aP' (aZ-r'2)& aP' 
A az 

r r 7 + - - +  ar i ~ r  a0 

iph U(  4Q2 - r2) r' cos 6 
- - , when r'2+z2/A2 = a2 ( A  = b/a). a 

Using the transformation 

the above equations can be written as 

3. Solution of the problem 
In  view of the condition on the body we take 

P' = Re[&@]. 

Whence Q satisfies (3.1) 
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with the condition 

on 

aQ ip; Ua(uQ2 - 02) 
r, 

aQ 2Q 
ar v ax cf 

r-+-Q+(l-r2)*h’- = 

837 

aQ=, on 131 = H .  az and 

The general solution of the equation (3.1) in the region 0 < E < H satisfying the 
condition on the upper plane Z = H can be expressed as 

cash K ( H  - X )  
A(K)  d K .  Q = Srn 0 Jl(Kr) - sinh KH (3.4) 

From the nature of the solution, we see that the flow is symmetric about the x, y 
plane and hence (2.14) gives 

(3.5) - -  a Q - ~  on Z = O  ( r > l ) .  
a2 

(Thus the above solution (3.4) can be extended to the region X < 0 by symmetry.) 
Assuming the body to be slender ( A  < 1)  we can replace (3.3) by X = 0,  thus 

satisfying the boundary condition (3.2) on X = 0 ( r  < 1). 
Hence the conditions (3.5) and (3.2) give 

rJy  A(K) & ( ~ r )  coth KH dK + - A(K) J 1 ( ~ r )  coth KH dK 2:j: 
ip; Ua( 4Q2 - ( r 2 )  + A’(1- T2)* Srn 0 K A ( K )  J 1 ( K P )  d K  = 

0- 
(r < 1)  (3.7) 

(’ denotes the differentiation with respect to ~ r ) .  

Case (i) 
When the plates are situated at a very large distance (h 9 a)  such that H N to, 
we take coth KH 21 1 and the equation (3.7) of dual integral equations reduces to 

The appropriate solution of (3.6) can be (Stewartson 1967) taken as 
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Substituting this into equation (3.8) and simplifying, we get 

Hence 

2ipA Ua( 4Q2 - a2) B=--  
n(2Q + a) + 4ah' 

When Q, p + 0 .  (2Q, ,,/(pg) are taken to be greater than a.) On plane 5 = 0, 
i.e. (2, y )  plane, 

Hence in the limit as a+ 0, on (x; y) plane 

P+ -2p;UQy if x2+y2 6 a2 

A t  any point inside the fluid ( z  + 0) 

Thus we see that the flow tends to a steady state, in the limiting case a+o. 
Also it can be shown that in the limit as a approaches zero, u, v are finite whereas 
w tends to zero. 

The forces on the spheroid in t,his case (calculated up to the O(h3)) are 

(hydrostatic tbruat) 

When p = 0; Q =+ 0. This case has been discussed by Stewartson (1967), who 
tackles it as an initial-value problem for the case of a sphere. When the plane 
boundaries are at very large distances the general expression for P is given by 
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(3.9) .  Since, when p = 0; z = 0, in the expression (3 .9)  putting z = 0 and taking 
the limit u -+ 0 we get 

and 

These expressions coincide with those given by Stewartson (1967) when A = 1. 
When Q = 0; /3 + 0. In  this case, H ,  z, both tend to infinity as u approaches 

zero and hence from (3 .9)  P --f 0 as u + 0. This particular case has been studied 
in detail in another paper (Krishna & Sarma 1 9 6 9 ~ ) .  

Case (ii) 
When the distance h is large but finite, the solution can be generalized using the 
expansion of coth KH as m 

coth K H  = 1 + 2 e-2nKH. 

n=l 

The main interest here is to study the effect of plane boundaries on the force 
acting on the spheroid. Replacing c o t h ~ H  by the above exponential series, 
(3 .7 )  can be expressed as 

-I- (z- l ) ~ m ~ ( K ) ~ l ( K ~ ) E - 2 n K ~ d K  when r < 1. (3.10) 
0 I 

We choose the solution of (3 .6)  as (Stewartson 1967) 

Wherein each term of the series satisfies the equation identically, and B,, B, etc. 
are constants to be determined. Substituting the above expression for A ( K )  
in (3.10) and solving for B,, B, we find 

2 Q + 5 u  ZQ+U 
$- 

(6Qn + (9n + 32A’) a f 6 0 [  ( 2 Q  + u)n+ 4uA’ 

-2ip~U~(4Q’-a~)(2Q+55a)5(5)  B -  
- [ (2Q + a)n + 4uA’I [6Qn+ (9n + 3%) v 
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neglecting terms of O(H-1,). Here <(a) is the Riemann-zeta function given by 
m 

n = l  
C@) = c q y a .  

Thus we note that the order of the constants B, etc. goes on decreasing as inverse 
powers of H and hence are negligible when H is sufficiently large. 

At any point in the region 0 < Z < H 

2 

2 

~- 1 -1 I-.-- 6 B2 

6 +B" 1 -  

+2r( n= 5 (2nH - x ) ~  (: ( 5 ( 2 n H - ~ ) ~ )  +E ( ' - 7 ( 2 n H - ~ ) ~  

1 m (4 ( ' - 5 ( 2 n H + ~ ) ~ )  15 ( 7 ( 2 n H + ~ ) ~  
+ z -______- ( 2 n ~  + 213 

1 + 
At any point on (x, y) plane 

C(3)-$2)&]+B2[4+(C(3)-m2)m]) 3a5)  1 

- - r 3 ( 2 +  ( B ~ + ~ )  B2 m2)]] C(5) if r < 1, 

+ (5(3) - -) 3C(5) 1 ] 
r 10H2 6H3 

+B, I_ 

-S(B,+?)]] 16H5 if r a  1. 

2' 2 )  r-2 [ 1 i r 3  2 1 (" g1 ) + (W - #) &3] ) 

At points very near the plate, 

p = Re[ei(.t+@(r( 1 

6 

In the limit u-+ 0, Z goes to z/a(pg/4r2)& and H goes to h/a(pg/4r2)9 and 

C(3) 75(5) 4[(5)5(3) + O(H-11) 
B, -+ 4ip'a 7T '*( 1 - m 3  + -5 - 1 57T2H8 

B2+ 
3n2H5 

Hence P tends to a finite limit as CT approaches zero. 
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Using (2.14) we find 

Thus we see that as the frequency of oscillation approaches zero the steady-state 
solution exists. The above expressions for u and v show that the limiting velocity 
is no longer independent of z but varies in a direction parallel to the rotation axis. 
Thus, due to the stable stratification present in the field, there is vertical shear 
in the horizontal velocity, resulting in the violation of the Taylor-Proudman 
constraint which holds in the case of homogeneous rotating fluid. 

The forces acting on the body are calculated in this case up to the O(h-6, h2) 
and it is found that 

277 4h pq * 11 5(5) 4Q2 8hc(3) uQ2 
FU=4p;a3Ufi-2h ( 3  --- 3 (4r2) - +-- 36 h5 (g) +-(%)-3%%$!p]- 
Thus we conclude that it is possible to obtain the steady-state solutions on the 
basis of linearized theory when a body is moving in a non-homogenous rotating 
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medium confined partially by the external boundaries. Also from the expression 
of the transverse force, we see that the presence of the plane horizontal boundaries 
increases the resistance in a direction perpendicular to the uniform motion of 
the body. 
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